Publication Beamlines Strategic Pillar
Pan, Y., Chen, N., Zhu, J., Hopps, N., Wiens, E. & Lin, J. (2020). Local structural environments of bromine in chlorine-rich minerals: Insights from Br K-edge XAS and 81Br MAS NMR. Earth Science Frontiers, Vol. 27: 10-22.. . . HXMA Environment
Lin, J., Chen, N. & Pan, Y. (2020). Uptake mechanisms of arsenate in gypsum: Structural incorporation versus surface absorption and implications for remediation of arsenic contamination.. . http://www.earthsciencefrontiers.net.cn/EN/10.13745/j.esf.sf.2020.5.40. HXMA Environment
Farzad Dehghan (2020). PVDF as a Biocompatible Substrate for Microfluidic Fuel Cells. Supervisor: Zhang, W.J. (Chris); Wilson, Lee. Saskatchewan, Canada: University of Saskatchewan. https://harvest.usask.ca/handle/10388/13156. SYLMAND Materials
Do, David (2020). X-ray Absorption Spectroscopy Studies of Metal and Metal-Oxide Nanocatalysts. Dalhousie University. https://dalspace.library.dal.ca/handle/10222/80021. CLS-APS Materials
Casali; Juliana (2020). Hydrothermal Alteration Footprint of the Monument Bay Project, Manitoba, Canada. Supervisor: Banerjee, Neil R.; Van Loon, Lisa. Ontario, Canada: The University of Western Ontario. https://ir.lib.uwo.ca/cgi/viewcontent.cgi?article=10085&context=etd. CLS-APS, CMCF, VESPERS Environment
Casali; Juliana (2020). Hydrothermal Alteration Footprint of the Monument Bay Project, Manitoba, Canada. Supervisor: Banerjee, Neil R.; Van Loon, Lisa. Ontario, Canada: The University of Western Ontario. https://ir.lib.uwo.ca/cgi/viewcontent.cgi?article=10085&context=etd. CLS-APS, CMCF, VESPERS Environment
Casali; Juliana (2020). Hydrothermal Alteration Footprint of the Monument Bay Project, Manitoba, Canada. Supervisor: Banerjee, Neil R.; Van Loon, Lisa. Ontario, Canada: The University of Western Ontario. https://ir.lib.uwo.ca/cgi/viewcontent.cgi?article=10085&context=etd. CLS-APS, CMCF, VESPERS Environment
Zoroufchi Benis, Khaled; Shakouri, Mohsen; McPhedran, Kerry; Soltan, Jafar (2020). Enhanced arsenate removal by Fe-impregnated canola straw: assessment of XANES solid-phase speciation, impacts of solution properties, sorption mechanisms, and evolutionary polynomial regression (EPR) models. Environmental Science and Pollution Research 28(10) , 12659-12676. 10.1007/s11356-020-11140-0. BIOXAS, BIOXAS-MAIN, BIOXAS-SPECTROSCOPY, BXDS-WLE Agriculture
Zoroufchi Benis, Khaled; Shakouri, Mohsen; McPhedran, Kerry; Soltan, Jafar (2020). Enhanced arsenate removal by Fe-impregnated canola straw: assessment of XANES solid-phase speciation, impacts of solution properties, sorption mechanisms, and evolutionary polynomial regression (EPR) models. Environmental Science and Pollution Research 28(10) , 12659-12676. 10.1007/s11356-020-11140-0. BIOXAS, BIOXAS-MAIN, BIOXAS-SPECTROSCOPY, BXDS-WLE Agriculture
Zoroufchi Benis, Khaled; Shakouri, Mohsen; McPhedran, Kerry; Soltan, Jafar (2020). Enhanced arsenate removal by Fe-impregnated canola straw: assessment of XANES solid-phase speciation, impacts of solution properties, sorption mechanisms, and evolutionary polynomial regression (EPR) models. Environmental Science and Pollution Research 28(10) , 12659-12676. 10.1007/s11356-020-11140-0. BIOXAS, BIOXAS-MAIN, BIOXAS-SPECTROSCOPY, BXDS-WLE Agriculture
Zoroufchi Benis, Khaled; Shakouri, Mohsen; McPhedran, Kerry; Soltan, Jafar (2020). Enhanced arsenate removal by Fe-impregnated canola straw: assessment of XANES solid-phase speciation, impacts of solution properties, sorption mechanisms, and evolutionary polynomial regression (EPR) models. Environmental Science and Pollution Research 28(10) , 12659-12676. 10.1007/s11356-020-11140-0. BIOXAS, BIOXAS-MAIN, BIOXAS-SPECTROSCOPY, BXDS-WLE Agriculture
Zhu, Jianbing; Li, Shuang; Xiao, Meiling; Zhao, Xiao; Li, Gaoran et al. (2020). Tensile-strained ruthenium phosphide by anion substitution for highly active and durable hydrogen evolution. Nano Energy 77, 105212. 10.1016/j.nanoen.2020.105212. BIOXAS, BIOXAS-SIDE, BIOXAS-SPECTROSCOPY, SXRMB, VESPERS Materials
Zhu, Jianbing; Li, Shuang; Xiao, Meiling; Zhao, Xiao; Li, Gaoran et al. (2020). Tensile-strained ruthenium phosphide by anion substitution for highly active and durable hydrogen evolution. Nano Energy 77, 105212. 10.1016/j.nanoen.2020.105212. BIOXAS, BIOXAS-SIDE, BIOXAS-SPECTROSCOPY, SXRMB, VESPERS Materials
Zhu, Jianbing; Li, Shuang; Xiao, Meiling; Zhao, Xiao; Li, Gaoran et al. (2020). Tensile-strained ruthenium phosphide by anion substitution for highly active and durable hydrogen evolution. Nano Energy 77, 105212. 10.1016/j.nanoen.2020.105212. BIOXAS, BIOXAS-SIDE, BIOXAS-SPECTROSCOPY, SXRMB, VESPERS Materials
Zhu, Jianbing; Li, Shuang; Xiao, Meiling; Zhao, Xiao; Li, Gaoran et al. (2020). Tensile-strained ruthenium phosphide by anion substitution for highly active and durable hydrogen evolution. Nano Energy 77, 105212. 10.1016/j.nanoen.2020.105212. BIOXAS, BIOXAS-SIDE, BIOXAS-SPECTROSCOPY, SXRMB, VESPERS Materials