Publication Beamlines Strategic Pillar
Zhang, Ning; Yu, Haifeng; Murphy, Aidan; Garayt, Matthew; Yu, Svena et al. (2023). A Liquid and Waste-free Method for Preparing Single Crystal Positive Electrode Materials for Li-ion Batteries. Journal of the Electrochemical Society 170(7) , 070515. 10.1149/1945-7111/ace4f7. BXDS-WLE Materials
Zoroufchi Benis, Khaled; Minaei, Shahab; Soltan, Jafar; McPhedran, Kerry N. (2022). Adsorption of lincomycin on microwave activated biochar: Batch and dynamic adsorption. Chemical Engineering Research and Design 187, 140-150. 10.1016/j.cherd.2022.08.058. BXDS-WLE, REIXS Agriculture
Zoroufchi Benis, Khaled; Shakouri, Mohsen; McPhedran, Kerry; Soltan, Jafar (2020). Enhanced arsenate removal by Fe-impregnated canola straw: assessment of XANES solid-phase speciation, impacts of solution properties, sorption mechanisms, and evolutionary polynomial regression (EPR) models. Environmental Science and Pollution Research 28(10) , 12659-12676. 10.1007/s11356-020-11140-0. BIOXAS, BIOXAS-MAIN, BIOXAS-SPECTROSCOPY, BXDS-WLE Agriculture
Zoroufchi Benis, Khaled; Sokhansanj, Amin; Norberto, Julia; McPhedran, Kerry N.; Soltan, Jafar et al. (2022). A binary oxide-biochar composite for adsorption of arsenic from aqueous solutions: Combined microwave pyrolysis and electrochemical modification. Chemical Engineering Journal 446, 137024. 10.1016/j.cej.2022.137024. BIOXAS, BXDS-WLE, HXMA Environment
Zoroufchi Benis, Khaled; Soltan, Jafar; McPhedran, Kerry N. (2022). A novel method for fabrication of a binary oxide biochar composite for oxidative adsorption of arsenite: Characterization, adsorption mechanism and mass transfer modeling. Journal of Cleaner Production 356, 131832. 10.1016/j.jclepro.2022.131832. BIOXAS, BXDS-WLE Environment
Abed, Jehad; Ahmadi, Shideh; Laverdure, Laura; Abdellah, Ahmed; O'Brien, Colin et al. (2020). Cryomilled Ni-Co-Se Enables Water Oxidation Electrocatalysts Durable at High Current Densities. Patent Number: 10.21203/rs.3.rs-85446/v1. CLS-APS Materials
Abed, Jehad; Heras-Domingo, Javier; Luo, Mingchuan; Sanspeur, Rohan; Alnoush, Wajdi et al. (2023). Multi-Descriptor Design of Ruthenium Catalysts for Durable Acidic Water Oxidation. Patent Number: 10.21203/rs.3.rs-2410178/v1. CLS-APS Materials
Amor, Matthieu; Faivre, Damien; Chevrier, Daniel M. (2021). Crystal-chemical and biological controls of trace and minor element incorporation into magnetite nanocrystals. Patent Number: 10.26434/chemrxiv-2021-j7qj2. CLS-APS Materials
Chen, Ziyi; Walsh, Andrew; wei, xiao; Zhu, Manzhou; Zhang, Peng et al. (2020). Site-Specific Electronic Properties of [Ag25(SR)18]- Nanoclusters by X-Ray Spectroscopy. Patent Number: 10.26434/chemrxiv.13225199.v1. CLS-APS Materials
Chen, Ziyi; Walsh, Andrew; Wei, Xiao; Zhu, Manzhou; Zhang, Peng et al. (2022). New Insights into the Bonding Properties of [Ag25(SR)18]- Nanoclusters from X-ray Absorption Spectroscopy. Patent Number: 10.26434/chemrxiv-2022-mt480. CLS-APS Materials
Lisa Van Loon; Neil Banerjee (2023). 14th Symposium on Mesozoic Terrestrial Ecosystems and Biota. Anatomical Record 306(S1) , 3-267. 10.1002/ar.25219. CLS-APS Environment
Liu, Peng; Ptacek, Carol; Blowes, David W.; Finfrock, Y. Zou (2020). Redox Mapping of Cr(VI) and Cr(III) in Biochar Particles Using Confocal Micro-X-Ray Fluorescence Imaging. . 10.46427/gold2020.1601. CLS-APS Environment
Peng, Tao; Zhuang, Taotao; Yan, Yu; Qian, Jin; Dick, Graham et al. (2021). Selective electrocatalytic hydrogenation of bio-oil to oxygenated chemicals via suppression of deoxygenation. Patent Number: 10.21203/rs.3.rs-131880/v1. CLS-APS Materials
Adair, Keegan R (2021). The Design and Characterization of Advanced Li Metal Anodes for Next-Generation Batteries. The University of Western Ontario (Canada). https://ir.lib.uwo.ca/etd/8037/. CLS-APS Materials
Alana Ou Wang (2020). Application of Biochar to Stabilize Mercury in Riverbank Sediments and Floodplain Soils from South River, VA under Conditions Relevant to Riverine Environments. Supervisor: Ptacek, Carol. ON: University of Waterloo. http://hdl.handle.net/10012/15416. CLS-APS Environment