Publication Beamlines Strategic Pillar
Deng, Sixu (2022). Development of High Performance Cathodes: From Liquid to Solid-State Batteries. Supervisor: Sun, Xueliang. Ontario, Canada: University of Western Ontario. https://ir.lib.uwo.ca/etd/8454. HXMA, SGM, SXRMB Materials
Somaye Nasr (2020). Cobalt oxide catalysts for wet lean methane combustion. Alberta, Canada: University of Alberta. . HXMA, SXRMB Materials
Sudheesh Kumar Veeranmaril (2021). Designing Sinter-Resistant Monometallic and Bimetallic Nanomaterials for Catalysis. Supervisor: Scott, Robert W. J.. Saskatoon: University of Saskatchewan. . HXMA, SXRMB Materials
Ya-Ping Deng (2020). Material Design and Electrochemical Behavior Study on Metal-Based Electrocatalysts for Rechargeable Zn-Air Batteries. Supervisor: Zhongwei Chen. Ontario, Canada: University of Waterloo. http://hdl.handle.net/10012/16223. BXDS-WHE, HXMA, SXRMB Materials
Hao Weiduo (2020). Clay surface reactivity and its interaction with trace elements. Supervisor: Konhauser Kurt; Alessi, Daniel. Alberta, Canada: University of Alberta. . HXMA Materials
Mehrnaz Mikhchian (2025). An investigation of the long-term aqueous corrosion behaviour of glass, crystalline ceramics, and glass-ceramic composite materials. Supervisor: Grosvenor, Andrew Paul. Saskatoon (SK, Canada): University of Saskatchewan. https://hdl.handle.net/10388/16536. CLS-APS, IDEAS, SXRMB, VLS-PGM Materials
Ketki Srivastava (2024). Everything, Everywhere, All At Once: Micro- and Nano-Fabrication for Sensitive, Homogenous and Spatio-Temporally-Resolved Raman and Infrared Spectroscopy Sensors. Supervisor: Odijk, M.; van den Berg, A.. Enschede, The Netherlands: University of Twente. https://doi.org/10.3990/1.9789036562171. MID-IR, SYLMAND Materials
Danielle McRae (2020). Plasmon-Enabled Physical and Chemical Transformations of Nanomaterials. Supervisor: Francois Lagugne-Labarthet. Ontario, Canada: University of Western Ontario. https://ir.lib.uwo.ca/etd/7068/. MID-IR Materials
Erick Soares Lins (2022). Dual Optical Frequency Comb Time-resolved Spectroscopy for Surface-Enhanced Spectroelectrochemistry. Supervisor: Burgess, Ian, J.. Saskatchewan, Canada: University of Saskatchewan. https://harvest.usask.ca/items/f9cae4bf-cc01-4c67-b75d-0e5631d7cc1c. MID-IR Materials
Denis AB Therien (2022). Plasmonically-Active Nanomaterials for Enhanced Second- Harmonic Generation and Chemical ReactionsHarmonic Generation and Chemical Reaction. Supervisor: Lagugné-Labarthet, François. Ontario, Canada: The University of Western Ontario. https://ir.lib.uwo.ca/etd/8536. MID-IR Materials
Tyler A. Morhart (2021). Surface-Enhanced Spectroelectrochemistry using Synchrotron Infrared Radiation. Supervisor: Burgess, Ian J.. Saskatchewan, Canada: University of Saskatchewan. https://harvest.usask.ca/handle/10388/13617. MID-IR, SYLMAND Materials
Tu; Kaiyang (2020). Developing Time-Resolved Synchrotron Infrared Spectroscopy for Spectroelectrochemical Measurements. Supervisor: Burgess, Ian J. Saskatchewan, Canada: University of Saskatchewan. https://harvest.usask.ca/handle/10388/12754. MID-IR, SYLMAND Materials
Alivia Mukherjee (2022). Generation of activated carbon from spent coffee grounds: Process optimization, kinetics and CO2 capture. Supervisor: Ajay K. Dalai, Catherine Niu. Saskatchewan, Canada: University of Saskatchewan. https://hdl.handle.net/10388/14190. MID-IR, SGM Materials
Ryan Patrick Day (2020). Leveraging the light-matter interaction in angle-resolved photoemission spectroscopy. Supervisor: Damascelli, Andrea. BC, Canada: University of British Columbia. http://hdl.handle.net/2429/75505. QMSC Materials
Marta Zonno (2020). Correlated phenomena studied by ARPES : from 3d to 4f systems. Supervisor: Damascelli, Andrea. BC, Canada: University of British Columbia. http://hdl.handle.net/2429/74692. QMSC, REIXS Materials