Hitchcock, Adam P. (2023). PEMFC analysis using soft X-ray spectromicroscopy: methods and applications. In Jasna Jankovic; Jürgen Stumper(Ed.), PEM Fuel Cells: Characterization and Modeling. Walter de Gruyter GmbH & Co KG. , 137-170 9783110622720. |
SM |
Book / Chapter |
Materials |
Hitchcock, Adam P. (2022). 3 Polymer surface characterization by near-edge X-ray absorption fine structure spectroscopy. . , 89-124 10.1515/9783110701098-003. |
SM |
Book / Chapter |
Materials |
Hitchcock, Adam P.; Zhang, Chunyang; Eraky, Haytham; Higgins, Drew; Belkhou, Rachid et al. (2024). Comparison of soft X-ray spectro-ptychography and scanning transmission X-ray microscopy. Journal of Electron Spectroscopy and Related Phenomena 276, 147487. 10.1016/j.elspec.2024.147487. |
SM |
Peer-Reviewed Article |
Materials |
Hitchcock, Adam P.; Zhang, Chunyang; Eraky, Haytham; Shahcheraghi, Ladan; Ismail, Fatma et al. (2021). In-situ and Operando Studies with Soft X-Ray Transmission Spectromicroscopy. Microscopy and Microanalysis 27(S2) , 59-60. 10.1017/s1431927621013295. |
SM |
Peer-Reviewed Article |
Materials |
Hogan, David T.; Gelfand, Benjamin S.; Spasyuk, Denis M.; Sutherland, Todd C. (2020). Subtle substitution controls the rainbow chromatic behaviour of multi-stimuli responsive core-expanded pyrenes. Materials Chemistry Frontiers 4(1) , 268-276. 10.1039/c9qm00710e. |
CMCF-BM |
Peer-Reviewed Article |
Materials |
Ho, J.; Becker, J.; Leedahl, B.; Boukhvalov, D. W.; Zhidkov, I. S. et al. (2019). Electronic structure and structural defects in 3d-metal doped In2O3. Journal of Materials Science: Materials in Electronics 30(15) , 14091-14098. 10.1007/s10854-019-01775-2. |
REIXS, SGM |
Peer-Reviewed Article |
Materials |
Ho, J.; Becker, J.; Leedahl, B.; Boukhvalov, D. W.; Zhidkov, I. S. et al. (2019). Electronic structure and structural defects in 3d-metal doped In2O3. Journal of Materials Science: Materials in Electronics 30(15) , 14091-14098. 10.1007/s10854-019-01775-2. |
REIXS, SGM |
Peer-Reviewed Article |
Materials |
Ho, Josha (2019). Characterization of Spintronic Systems using Soft X-ray spectroscopy. Supervisor: Moewes, Alexander. Saskatchewan, Canada: University of Saskatchewan. http://hdl.handle.net/10388/11976. |
REIXS, SGM |
Masters Thesis |
Materials |
Ho, Josha (2019). Characterization of Spintronic Systems using Soft X-ray spectroscopy. Supervisor: Moewes, Alexander. Saskatchewan, Canada: University of Saskatchewan. http://hdl.handle.net/10388/11976. |
REIXS, SGM |
Masters Thesis |
Materials |
Ho, Josha; de Boer, Tristan; Braun, Patrick M.; Leedahl, Brett; Manikandan, Dhamodaran et al. (2020). Origin and control of room temperature ferromagnetism in Co,Zn-doped SnO2: oxygen vacancies and their local environment. Journal of Materials Chemistry C 8(14) . 10.1039/c9tc06830a. |
REIXS, SGM |
Peer-Reviewed Article |
Materials |
Ho, Josha; de Boer, Tristan; Braun, Patrick M.; Leedahl, Brett; Manikandan, Dhamodaran et al. (2020). Origin and control of room temperature ferromagnetism in Co,Zn-doped SnO2: oxygen vacancies and their local environment. Journal of Materials Chemistry C 8(14) . 10.1039/c9tc06830a. |
REIXS, SGM |
Peer-Reviewed Article |
Materials |
Hong, Hu; Fu, Yihang; Chen, Long; Ding, Hekun; Feng, Renfei et al. (2023). Amino-doping regulates the surface of nickel-based catalysts to promote the formation of the real active states. Solid State Sciences 146, 107343. 10.1016/j.solidstatesciences.2023.107343. |
SXRMB, VESPERS |
Peer-Reviewed Article |
Materials |
Hong, Hu; Fu, Yihang; Chen, Long; Ding, Hekun; Feng, Renfei et al. (2023). Amino-doping regulates the surface of nickel-based catalysts to promote the formation of the real active states. Solid State Sciences 146, 107343. 10.1016/j.solidstatesciences.2023.107343. |
SXRMB, VESPERS |
Peer-Reviewed Article |
Materials |
Hongjie Dai; Ming GONG (2019). Heterostructures for ultra-active hydrogen evolution electrocatalysis. Patent Number: AU2015289518B2. |
SGM |
Patent |
Materials |
Hongliu DAI; Gaixia Zhang; Sun SHUHUI (2023). Additive combination for secondary battery electrolytes. Patent Number: WO2023164770A1. |
VLS-PGM |
Patent |
Materials |