Publication Beamlines Strategic Pillar
Nickel, Rachel; Gibbs, Josh; Burgess, Jacob; Shafer, Padraic; Meira, Debora Motta et al. (2023). Nanoscale Size Effects on Push–Pull Fe–O Hybridization through the Multiferroic Transition of Perovskite ϵ-Fe2O3. Nano Letters 23(17) , 7845-7851. 10.1021/acs.nanolett.3c01512. CLS-APS Materials
Nickel, Rachel; Sun, Chengjun; Meira, Debora Motta; Shafer, Padraic; van Lierop, Johan et al. (2024). Insights into ε−Fe2O3 interactions via Cr doping. Physical Review Materials 8(2) . 10.1103/physrevmaterials.8.024407. CLS-APS Materials
Ogada, Jimodo J.; Ipadeola, Adewale K.; Mwonga, Patrick V.; Haruna, Aderemi B.; Nichols, Forrest et al. (2022). CeO2 Modulates the Electronic States of a Palladium Onion-Like Carbon Interface into a Highly Active and Durable Electrocatalyst for Hydrogen Oxidation in Anion-Exchange-Membrane Fuel Cells. ACS Catalysis 12(12) , 7014-7029. 10.1021/acscatal.2c01863. CLS-APS Materials
O’Neil, Galen C.; Miaja-Avila, Luis; Joe, Young Il; Alpert, Bradley K.; Balasubramanian, Mahalingam et al. (2017). Ultrafast Time-Resolved X-ray Absorption Spectroscopy of Ferrioxalate Photolysis with a Laser Plasma X-ray Source and Microcalorimeter Array. Journal of Physical Chemistry Letters 8(5) , 1099-1104. 10.1021/acs.jpclett.7b00078. CLS-APS
Ou, Wenjuan; Lan, Xin; Guo, Jing; Cai, Aimin; Liu, Peng et al. (2023). Preparation of iron/calcium-modified biochar for phosphate removal from industrial wastewater. Journal of Cleaner Production 383, 135468. 10.1016/j.jclepro.2022.135468. CLS-APS Environment
Ozden, Adnan (2022). Energy- and Carbon-efficient CO2 Electrolysis. University of Toronto. https://tspace.library.utoronto.ca/handle/1807/129753. CLS-APS Materials
Ozden, Adnan; Li, Jun; Kandambeth, Sharath; Li, Xiao-Yan; Liu, Shijie et al. (2023). Energy- and carbon-efficient CO2/CO electrolysis to multicarbon products via asymmetric ion migration–adsorption. Nature Energy 8(2) , 179-190. 10.1038/s41560-022-01188-2. CLS-APS Materials
Padmos, J. Daniel; Morris, David J.; Zhang, Peng (2018). The structure and bonding properties of tiopronin-protected silver nanoparticles as studied by X-ray absorption spectroscopy. Canadian Journal of Chemistry 96(7) , 749-754. 10.1139/cjc-2017-0674. CLS-APS, SXRMB
Pahari, Shankar; Vaid, Neha; Soolanayakanahally, Raju; Kagale, Sateesh; Pasha, Asher et al. (2024). Nutri‐cereal tissue‐specific transcriptome atlas during development: Functional integration of gene expression to identify mineral uptake pathways in little millet (Panicum sumatrense). Plant Journal 119, 577–594. 10.1111/tpj.16749. BMIT-BM, CLS-APS Agriculture
Paidi, Vinod K.; Shepit, Michael; Freeland, John W.; Brewe, Dale L.; Roberts, Charles A. et al. (2021). Intervening Oxygen Enabled Magnetic Moment Modulation in Spinel Nanostructures. Journal of Physical Chemistry C 125(48) , 26688-26697. 10.1021/acs.jpcc.1c06494. CLS-APS Materials
Paknahad, Elham; Grosvenor, Andrew P. (2017). Investigation of the stability of glass-ceramic composites containing CeTi2O6 and CaZrTi2O7 after ion implantation. Solid State Sciences 74, 109-117. 10.1016/j.solidstatesciences.2017.10.013. CLS-APS, VLS-PGM Materials
Paknahad, Elham; Grosvenor, Andrew P. (2017). Investigation of CeTi2O6- and CaZrTi2O7-containing glass–ceramic composite materials. Canadian Journal of Chemistry 95(11) , 1-12. 10.1139/cjc-2016-0633. CLS-APS, SXRMB, VLS-PGM Materials
Paktunc, Dogan; Coumans, Jason P.; Carter, David; Zagrtdenov, Nail; Duguay, Dominique et al. (2023). Mechanism of the Direct Reduction of Chromite Process as a Clean Ferrochrome Technology. ACS Engineering Au . 10.1021/acsengineeringau.3c00057. CLS-APS Materials
Paktunc, D.; Thibault, Y.; Sokhanvaran, S.; Yu, D. (2018). Influences of alkali fluxes on direct reduction of chromite for ferrochrome production. Journal of the Southern African Institute of Mining and Metallurgy 118(12) . 10.17159/2411-9717/2018/v118n12a9. CLS-APS Environment
Pang, Yuanjie; Li, Jun; Wang, Ziyun; Tan, Chih-Shan; Hsieh, Pei-Lun et al. (2019). Efficient electrocatalytic conversion of carbon monoxide to propanol using fragmented copper. Nature Catalysis 2(3) , 251-258. 10.1038/s41929-019-0225-7. CLS-APS Materials